

Journal of

Design Studio
v:7 n:1 July 2025

5
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

Algorithmic Art Praxis: A Framework for

Contextualized Programming Education

Alp Tugan
Ozyegin University, Faculty of Architecture and Design, Istanbul, Türkiye (Corresponding author)

Ayse Hazar Koksal
Ozyegin University, Faculty of Architecture and Design, Istanbul, Türkiye.

Research Article / Received: January 4th 2025, Revised: Accepted: January 22nd 2025

Refer: Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education, Journal of
Design Studio, V.7 N.1, pp 5-29.

A. Tugan ORCID 0000-0003-3673-8675 (alp.tugan@ozyegin.edu.tr), A. H. Koksal ORCID: 0000-0001-6491-589X

(ayse.koksal@ozyegin.edu.tr)
DOI: 10.46474/jds.1613349 https://doi.org/10.46474/jds.1613349

© Author/s This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract: The amalgamation of computational thinking (CT) with contextualized instruction provides

a sturdy framework for enriching programming education, especially for novice learners in design-

centric higher education programs, where visual and experiential learning modalities prevail. CT,

recognized as a critical methodology for solving complex programming challenges, underpins the

development of the Algorithmic Art Praxis (ALAP) Categories—a structured toolkit designed to bridge

abstract computational concepts with tangible, art-based applications. This research utilizes a rigorously

curated online database of algorithmic artworks as a primary source for content analysis and pedagogical

investigation. Over 2,000 algorithmic artworks from secondary sources were subjected to a rigorous,

iterative review process, narrowing the collection to 695 deeply analyzed samples that inform the

database’s foundational content. Through this analytical perspective, 18 distinct ALAP Categories were

identified, each mirroring fundamental programming principles as exemplified in algorithmic art. These

categories establish a structured taxonomy that harmonizes computational thinking activities with

contextualized programming education, thereby providing a customized approach to addressing the

distinct cognitive and creative requirements of design students. The ALAP toolkit, consisting of the 18

categories, a succinct reference guide, and the curated database, serves as a versatile resource for

educators, researchers, and students. Through the integration of computational thinking with algorithmic

art, it facilitates the cultivation of programming proficiency in visually oriented learners while

promoting engagement through relevance and creativity. This framework underscores the potential of

contextualized learning to transform abstract programming concepts into accessible, meaningful

educational experiences.

Keywords: Computational thinking, Algorithmic art, Programming, Contextualized education, Problem-

solving, Visual learning

1. Introduction

Computers have become an integral part of our

daily lives across a range of disciplines,

including engineering, architecture, design,

visual arts and music, over the past two decades.

In addition to proficiency in third-party

software tools such as Word, Excel and

Photoshop, the ability to read and write

computer programs has emerged as a highly

sought-after skill (Shein, 2014; Romero et al.,

2017). While governments encourage

individuals to gain computer literacy, large

companies, managers, and employers have

started to prefer employees with programming

knowledge in their job applications, regardless

of their actual requirements (Guzidal, 2009).

All these developments have caused computing

education to become a skill not only for

mailto:alp.tugan@ozyegin.edu.tr
mailto:ayse.koksal@ozyegin.edu.tr
https://doi.org/10.46474/jds.1613349
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3673-8675
https://orcid.org/0000-0001-6491-589X
http://creativecommons.org/licenses/by/4.0/

Journal of
Design Studio
v:7 n:1 July 2025

6
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

computer science (CS) majors but also for

design students outside of this field.

Regrettably, programming courses have a

lengthy track record of experiencing high

dropout rates, failures, and inducing stress

(Bryant et al., 2011). Research indicates various

reasons for disengagement at programming

courses independent from student majors. One

of them is the prejudice against coding among

students causes declining attendance to

computing classes (Allwood, 1986; Winslow,

1996; Robins et al., 2003; Ring et al., 2008;

Yardi & Bruckman, 2007). According to Yardi

and Bruckman, younger generations perceive

computer programming as tedious. Even if most

teenagers use technology daily, using textual

commands does not attract their interest.

Although many modern programming language

semantics are in English, students need help

comprehend programming tools' linguistic

grammar. Also, the abstract nature of

programming languages compels novices on

several concepts like variable types, loops, and

conditional statements (Yadav et al., 2017;

Robins et al., 2003; Brown & Wilson, 2018;

Guo, 2017). Brown and Wilson (2018) claim

that not all students have difficulty engaging

with computing classes. While some novice

students can effortlessly grasp the programming

language syntax, some need help to handle the

semantic concepts of programming language.

Liao and Pope (2008) indicate that non-

computer-major students are unwilling to deal

only with numbers and semantic words on a

white text window. Old-fashioned course

materials cannot motivate students. Out-of-date

computing exercises cannot help students build

essential knowledge. The majority of studies

advocate for educators to employ modern, high-

level programming languages that generate

visual output, including Processing,

TouchDesigner, MAX, VVVV, and numerous

others. Conversely, Hansen (2019) posits that

the specific programming language employed

in computing classes is inconsequential,

provided that students are motivated by the

relevance of the course content. As long as

students are motivated by the relevancy of the

course content, they internalize programming as

a helpful aptitude for their vocational life

(Lohiniva et al., 2021). It is therefore evident

that enhancing the motivation and engagement

of students represents a pivotal element within

the context of programming classes. One

potential solution to this issue is the

implementation of a contextualized teaching

approach. Previous research has demonstrated

that teaching in context can positively influence

student motivation (Bryant et al., 2011;

Guzdial, 2006; Hansen, 2019). For students

who are not majoring in computer science,

contextualized courses can serve as an

introductory gateway, enhancing the

accessibility and relatability of the subject

matter (Guzdial, 2010).

Computational thinking (CT) as a pedagogical

approach has its roots in Seymour Papert's

constructionist learning theory. It is considered

to be an effective method for teaching

programming tasks (Papert, 1980). CT has been

proposed as a practical problem-solving

approach, mainly through its emphasis on

decomposition (Mollu, 2020). As a pedagogical

approach has its roots in Seymour Papert's

Constructionist learning theory (Papert, 1980).

Papert's approach to constructionism highlights

learning through active involvement and the

creation of knowledge. This approach laid a

solid theoretical groundwork for the principles

and methods that later became linked with CT

(Wing, 2008). Generally, CT has four main

principles as a problem-solving method

(Hansen, 2019). Decomposition entails

separating objects, Pattern Recognition

identifies recurring patterns, Abstraction

involves representing the translation of

collected ideas into computer domain, and

finally, Algorithm Design interests arranging

the order of the syntactic commands in the most

optimal way related to identified programming

tasks. The initial step is to deconstruct the

intricate issues into smaller, more manageable

components. By breaking them down into more

manageable parts, it becomes possible to

analyze and address each aspect effectively.

Novices can handle the decomposition and

pattern recognition steps using their natural

language (Medeiros et al., 2019). However,

effectively applying this principle requires

overcoming a significant challenge because of

Journal of
Design Studio
v:7 n:1 July 2025

7
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

the tacit nature of computer programming. Tacit

knowledge refers to the implicit understanding

gained through experience and practice, which

is often challenging to articulate and share

explicitly (Polanyi & Sen, 2009). In

programming practice, conveying the specific

heuristics and strategies used to decompose

complex problems makes it challenging to

implement CT principles effectively, which

poses a barrier to learners and practitioners. As

a result, motivational issues arise, and students

tend to drop classes or lose interest in the topic

(Farah et al., 2020). Research indicates that

beginner programmers demonstrate an intuitive

grasp of step-by-step instructions in natural

language, influencing their approach to

programming tasks (Bonar & Soloway, 1983,

1985). While natural language aids in

understanding computational concepts, it also

presents challenges when used for coding

(Good & Howland, 2017). Novices often

require support translating their natural

language understanding into formal

programming languages, leading to

misconceptions and bugs (Bonar & Soloway,

1985). Studies have shown that beginners can

articulate required instructions in natural

language narratives but need help converting

these ideas into programming constructs (Souza

et al., 2011). In light of these challenges,

researchers have put forth design guidelines for

novice programming environments that take

into account the role of diverse notations,

including natural language, in facilitating a

range of programming activities (Good &

Howland, 2017). Despite teaching in context

increases student motivation and CT eases the

process of analyzing and identifying the

programming tasks, novices face off to a new

layer of challenge. In the context of computer

art, novices need to learn programming, and

also complex algorithms used by artists. While

CT lacks of customized tools, teaching in art

context demands for complex programming

paradigms (Medeiros et al., 2019). Repenning

et al (2016) notes that there need to be tools for

different contexts of Computational Thinking.

Computational Thinking Tools are designed to

educate users and promote computational

thinking. It is imperative that they address not

only the syntactic aspects of programming, but

also the semantic and pragmatic elements,

while providing support for the formulation of

problems, the expression of solutions, and the

execution and evaluation of solutions. This

approach can facilitate computational thinking

in various disciplines without introducing

unnecessary complexity. These findings

highlight the necessity of establishing a

connection between novices' intuitive

understanding and formal programming

languages in the context of computational

thinking and programming education.

Following these implications, there needs to be

additional materials in order to ease the process

of knowledge translation. In that sense, we

articulate the following research question:

"How can we integrate programming

fundamentals with Algorithmic Art to enhance

computational thinking skills, such as pattern

recognition, abstraction, and algorithm design

that emphasize real-world applications for

higher education?" To answer this question,

the systematic review and content analysis of

2000 images representative Algorithmic works

of art were performed. In light of our research

findings, we have devised a framework and

presented a case study that educators can

employ in the context of contextualized

programming classes. We created semiotically

meaningful constructs by identifying and

classifying common strategies used in

algorithmic art. These constructs act as shared

symbols and representations, facilitating

communication and knowledge sharing about

tacit knowledge related to CT application.

2. Methodology

The development of the Algorithmic Art Praxis

study involves a thorough review of online

secondary data sources, including online

databases, art galleries, and research centers.

We created an online database1 using a third-

party web application to organize all resources

in one place and provide learning and practice

material for other researchers, educators, and

students. The data was systematically analyzed

by collecting and categorizing the artworks

based on their formal aspects, such as style,

medium, and composition. The categorization

system, referring to the programming practice,

was developed using an iterative design

Journal of
Design Studio
v:7 n:1 July 2025

8
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

approach, which involved continuous

refinement based on recorded samples related to

the creative coding practices.

2.1. Data Collection

A comprehensive review was conducted of

2,220 secondary source images, from which

695 were selected for detailed analysis and

recorded as entries in the database. Data was

collected from reputable sources, including

museum websites, digital art archives, and

scholarly publications (Table 1). In selecting

images for the online repository, consideration

is given to the formal aspects of the artwork's

visual composition. Provided that the final

image is not solely a three-dimensional

rendered or realistic image, it may be added to

the collection for analysis.

The utilization of secondary data sources as a

sample collection method is a crucial aspect of

this research. The artworks' images and scanned

photographs are collected from various sources,

including gallery web pages, funded research

collectives, published books, and magazines.

When choosing a data source, it is of utmost

importance to prioritize websites that are

affiliated with official institutions,

Table 1: List of secondary sources.

Name Content Type URL

Atari Archives Computational www.atariarchives.org

Computer Art Computational dada.compart-bremen.de

DAM.org Computational dam.org

Digital Art Museum Computational digitalartmuseum.org

Guggenheim Mixed www.guggenheim.org

Internet Archive: Computers and Automation (1940-

1980)
Mixed www.archive.org

MOMA Mixed www.moma.org

MOMA San Francisco Mixed www.sfmoma.org

The MET Museum Mixed www.metmuseum.org

Monoskop Mixed monoskop.org

Rhizome Mixed rhizome.org

Scanlines: Computers & Art (1970-1980) Mixed scanlines.xyz

Spalter Digital Mixed spalterdigital.com

TATE Mixed www.tate.org.uk

The Art Story Mixed www.theartstory.org

TOPLAP Mixed toplap.org

Victoria & Albert Museum Mixed collections.vam.ac.uk

Whitney Museum of American Art Mixed whitney.org

WikiArt Mixed www.wikiart.org

ZKM Mixed zkm.de/en

https://dada.compart-bremen.de/
https://dam.org/
https://digitalartmuseum.org/
https://monoskop.org/
https://rhizome.org/
https://scanlines.xyz/
https://spalterdigital.com/
https://toplap.org/
https://collections.vam.ac.uk/
https://whitney.org/
https://zkm.de/en

Journal of
Design Studio
v:7 n:1 July 2025

9
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

communities, or other trustworthy sources. In

pursuit of this objective, we have drawn upon

the websites of distinguished institutions such

as the Museum of Modern Art (MoMA) and the

Guggenheim Museum, as well as those of

esteemed researchers in the field, including

DAM (Digital Art Museum), Spalter Digital,

and Monoskop. For a comprehensive list of the

research sources consulted, please refer to Table

1. The table features three columns, each

containing relevant information in an organized

manner as following;

 Name: Official name of the

institution/collective/research

center/museum.

 Content Type: The website's content can be

classified into two principal categories:

computational and mixed. Computational

content encompasses technology-based

artworks, including computer art,

algorithmic art, and (new) media art. Mixed

content, in contrast, incorporates both

traditional and technology-based works of

art.

 URL: Includes the website address of the

relevant item.

Mixed type content sources involve a large

repository of artists from diverse fields and

artworks with variable mediums. The ones in

the Table 1 like Victoria & Albert Museum

website is not dedicated to works of computer

art. However these sources collected vast

amount of algorithmic art works as well. Rather

than searching by artist names, keyword or tag

based search method allows access all available

works of art under the relevant keyword. The

keywords used for searching the databases

including mixed type are “Computer Art,”

“Algorithmic Art,” “Generative Art,” and

“(New) Media.”

The sources with “Computational” type like

Anne and Michael Spalter Digital Art

Collection, also known as Spalter Digital, is a

prominent private collection of early computer

art, renowned for its extensive scope and

significance. It is home to over 1000 artwork

images, making it one of the world's largest

collections in the context of computer art, as per

our research. While its primary focus lies in

plotter drawings, the collection encompasses

various other 2D media, including sculpture and

16mm film. It boasts major works and iconic

pieces created by key artists in the field.

We utilized various secondary data sources in

our research, including the Internet Archive2

(IA), which offers a wide array of document

sources covering diverse topics (Internet

Archive, 2023). Our exploration of the IA

website led to the discovery of documents

related to early computer art, including one of

the earliest open calls for computer art in the

"Computers and Automation" magazine, which

was published from the 1940s to the 1980s

before assuming the name "Computers and

People" in the 1970s (Berkeley, 1963; Franke,

1971; Macdonald, 1981). IA was an invaluable

resource for accessing early works of

algorithmic art and provided insight into early

programming practices for creating algorithmic

compositions from the 1950s to the 1970s. Our

thorough review encompassed a total of 315

issues from the IA website, uncovering some of

the earliest examples of computationally

generated art. The complete archive is

accessible on the IA webpage, and we

meticulously reviewed each volume by

examining pages and contents. Our review of

the monthly issues involved two methods: The

first method entailed searching for keywords

such as "computer art," "computer-art,"

"algorithmic art," or "algorithmic-art."

However, locating specific text within the

scanned magazines proved challenging. The

second method involved generating thumbnails

of each page using a third-party application or

IA's built-in PDF viewer, enabling us to more

accurately and efficiently identify computer-

generated artworks. This approach facilitated

gathering more comprehensive information

about the algorithmic artworks and their

production methods.

2.2. Online Database System and Interface

In order to develop an accessible web

application, we employed Notion3, a note-

taking application with a well-structured

database infrastructure that perfectly aligns

with our requirements. By utilizing Notion's

relational database framework, we are able to

Journal of
Design Studio
v:7 n:1 July 2025

10
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

input and deploy data to the web swiftly and

efficiently, thus saving valuable time and

resources. Furthermore, its cloud-based system

enables us to instantly upload new images, input

data, and promptly publish the new content

online.

The database consists of 695 entries we

carefully selected from a pool of 2200 samples

discussed in the preceding section. Each entry

contains ten distinct properties that provide

information about the entry. Table 1 illustrates

the database infrastructure. The Medium and

Classification parameters can accommodate

multiple values based on information obtained

from image sources. The Praxis parameter can

also hold multiple values derived from

contextual analysis of the artwork about

programming principles. Except for the

category names in the Praxis section, all the

information has been utilized as indicated in the

relevant sources. The naming convention for

the category names in the Praxis section will be

elucidated in the subsequent section.

Figure 1: Algorithmic Art Praxis Database Infrastructure

Journal of
Design Studio
v:7 n:1 July 2025

11
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

Each entry in the database consists of a singular

image or multiple variations of the same

artwork if the artist created them. The name of

the artist and the artwork are displayed on each

item in the gallery, as shown in Figure 3.

Users can access detailed information When

they interact with an artwork displayed in the

gallery (Figure 4). The gallery items share

common parameters.

Figure 2: ALAP Database Thumbnail View is online and accessible at https://tinyurl.com/alap-database.

Figure 3: Gallery Item Close Up View

https://tinyurl.com/alap-database

Journal of
Design Studio
v:7 n:1 July 2025

12
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

The following Table 2 lists the available sample

(artwork) parameters, and their relevant

descriptions related to Figure 4.

The database is designed to display a single

image for each artwork item. However, the

increase in the number of samples has led to an

Figure 4: Detail View of Clicked Artwork Item

Table 2: Database Item Parameters and Descriptions

Parameter Description

Created Database Item creation date.

Title The artwork’s official title.

Medium The tangible supplies that were utilized to make the artwork.

Artist The artist(s)’s name and last name.

Classification Processes used to produce the artwork.

Praxis
Outlines the potential algorithmic practice categories that could be applied to

produce the artwork.

Date Artwork creation date.

Size The original dimensions of the artwork (metric or inch units).

URL The official source of the artwork.

Additional Info
Information regarding the technical hardware and methods used in creating the

artwork.

Journal of
Design Studio
v:7 n:1 July 2025

13
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

issue with similar artworks. This similarity is

due to algorithmic art techniques, such as

randomness, weighted distribution of numbers,

and stochastic decision processes (Bailey, 2018;

Phon-Amnuaisuk & Panjapornpon, 2012).

Artists who use computers and algorithms to

create variations of the same artwork by

tweaking parameters based on computational

paradigms produce results that are formally

similar but aesthetically different (Boden &

Edmonds, 2009; Galanter, 2016). At times,

artists may choose to exhibit all iterations, while

other times they may not. The images in the

database have been thoughtfully organized

based on their formal resemblances. If a set of

works was produced within an iterative

approach, an artwork item in the database may

include multiple images, as explicitly declared

by the source or if it is obvious. For example,

Aaron Marcus' Cybernetic Landscapes series

(Figure 5). The main goal was to group similar

artworks together, prioritizing this over

arranging them according to their series.

Nonetheless, all relevant details have been

provided to aid fellow researchers in tracing the

origins of the artwork, including information on

whether it belongs to a series or not.

2.3. Analysis and Results
The development of the ALAP categories

followed an iterative design process (Figure 6).

This approach allowed for continuous

refinement of the categorization system as new

data was incorporated into the ALAP database

presented in the previous section. The Praxis

categories have been carefully crafted to align

with the formal and compositional aspects of

the artworks. Through a thorough review of

over 695 algorithmic works of art samples from

1920 to 2000, 18 distinct category names have

been identified.

The main inspiration for the category names is

the fundamental ingredient of creating a visual

representation, the vertex. In computer

graphics, geometric forms are defined through

points per pixel. A vertex represents a point in

space determined by both x and y coordinates.

We can position the vertex in a computer

Figure 5: Cybernetic Landscapes Series by Aaron Marcus

Journal of
Design Studio
v:7 n:1 July 2025

14
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

window at any location. If we increase the

number of vertices on the canvas, we can create

more complex forms. A line comprises two

vertices, while a triangle requires three, and a

quadrilateral comprises four vertices, as shown

in Figure 7. Whether a simple shape or a

complex geometric form, the graphical element

on the screen is the cause of vertices

organization. By moving or rotating the vertices

around a point, we can transform a geometric

form into a leaf or increase the size of the leaf

to fit our needs. In a basic sense, we can create

any visual element using these three actions.

We took these three properties for granted while

determining the category names in the Praxis

category. Thanks to programming language

references and pre-coded examples, we

compiled a list of function and algorithm names

to serve as category names for representing a

programming practice of the artworks.

We derived the category names using the list

referenced from programming terms and

algorithm names within creative coding

frameworks depending on textual programming

languages such as Processing (Reas & Fry,

2007; Shiffman, 2008; Terzidis, 2009; Pearson,

2011), P5JS (McCarthy et al., 2016), and

openFrameworks (Noble, 2009; Perevalov &

Tatarnikov, 2015). In our analysis, we

meticulously document the formal aspects of

elements in artwork images, focusing on the

vertices of graphical elements. We thoroughly

review the book chapters to identify relevant

programming practices, and we organize each

chapter with its respective page number under

Figure 6: Cybernetic Landscapes Series by Aaron Marcus

Figure 7: Vertices shape simple and complex polygons in computer graphics

Journal of
Design Studio
v:7 n:1 July 2025

15
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

the appropriate draft category name. Figure 8

displays the finalized category names, with

book titles listed along the vertical axis and

relevant topics associated with each category

name listed along the top horizontal axis. Each

cell within the table contains the corresponding

book title and the page number in parentheses.

The iterative design process involves creating,

testing, and refining a product/concept until it

achieves the desired outcome. This process

includes continuous comparisons,

improvement, and adaptation to evolving needs.

Creative coding frameworks like P5JS are

primarily designed in high-level programming

languages, resembling written human natural

language in English. Consequently, for our

research, the naming convention aims to mirror

natural language as much as possible. We aim

to keep Praxis category names comprehensible

for novices without additional research into a

programming practice. The process comprises

three key phases: creation, analysis, and

evaluation, illustrated in Figure 6.

1) Creation: Each image was added to

the database as a sample, and its data was

recorded based on the information obtained.

Notably, no entry was made for the Praxis

section during this stage.

2) Analysis: Once all the information

collected from the source was entered into the

database, the Praxis category was identified

based on the formal and compositional features

of the artwork, and its name was directly

derived from the list of categories illustrated at

Figure 8.

3) Evaluation: As the dataset grew, the

Praxis categories underwent frequent review

and refinement to accommodate the increasing

number of new images. This led to further

enhancements of the existing categories and, in

some cases, the introduction of new ones to

maintain precision and ensure an accurate

representation of the data. For example, the

initial version of "Transformation" was later

changed to "Translate" to align with creative

coding paradigms and programming languages.

Eventually, "Translate" was refined to

"Translation" to emphasize the practice rather

than referencing a specific programming

language syntax, as the Praxis category names

need to be programming language agnostic. It

was important to avoid confusion for beginners

using different programming languages than

Processing or P5JS, hence the adjustment from

"Translate" to "Translation."

The iterative design process allowed the Praxis

category system to evolve and adapt to the

increasing data, fostering a robust and flexible

framework for algorithmic art categorization to

represent relevant programming practice. This

evolution ensures that the system remains

robust and up-to-date, ready to handle the

Figure 8: Sources and book content relevant to the ALAP Categories

Journal of
Design Studio
v:7 n:1 July 2025

16
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

complexities of algorithmic art categorization.

We provide comprehensive explanations and a

collection of sample artwork images from our

online ALAP database for every category listed

below. It should be noted that all reference

images of artworks per category can be

accessed in larger resolution via the online

ALAP Database as well

(https://tinyurl.com/alap-database). Also, there

are video tutorials on how to use the interface of

the database4.

Translation: It refers to changing the x and y

coordinates of the individual vertices separately

or all together. Transformation is close to

Displacement. The difference is that the vertex

points gradually form from a primitive shape to

another complex shape. "Return to Square" is

an excellent example of this behaviour. The

main property to define transformation can be

viewed in (Return to Square) work. The use of

translate function can be used (Figure 9).

Rotation: It represents the change in the

orientation of objects on the canvas (Figure 10).

Scaling: It represents the change in the

dimensions of objects on the canvas (Figure

11).

Symmetry: It depicts mirrored forms of

representations. Sometimes, it is combined with

other Praxis, and results in minor differences

might occur (Figure 12).

Figure 9: Artworks showcase transformational behaviours.

Figure 10: Artworks showcase rotational behaviours

Figure 11: Artworks showcase dimensional behaviours

Figure 12. Artworks showcase symmetric behaviours

https://tinyurl.com/alap-database

Journal of
Design Studio
v:7 n:1 July 2025

17
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

Repetition: It means repeating an action

manually or computationally repeatedly in a

limited amount of cycles to produce the visual

form. Repetition is often used to create patterns,

textures, and complex visual structures. Loops

are a common way to implement repetition in

computer programs. They allow a specific set of

instructions to be repeated a certain number of

times (Figure 13).

Trace: It occurs when the object's opacity

decreases or increases through the canvas. The

main difference between Tracing and Layering

is the way they represent how the following or

upcoming forms are structured. Tracing is a

continuous set of repetitions, whereas layering

is more like the style of color printing

techniques applied in traditional printing press

(Figure 14).

Tiling: Tiling is a way of creating a grid-based

distribution on the canvas. Individual patterns

in the grids do not have to be continuous or

mixed with each other. Multiple objects or

object groups can be positioned in a regular grid

manner. Individual patterns in the grid can be

different from each other (Figure 15).

Tessellation: The art of Tessellation is a one-

of-a-kind computer-generated technique that

produces visually appealing and seamless

patterns by utilizing a variety of shapes. This

artistic form has a lengthy history and can be

observed in numerous creative and

mathematical ventures (Torrence, 2021). Even

though Tessellation and tiling both involve

covering a surface with a pattern of flat shapes,

these terms are different. Tessellation pertains

specifically to the creation of patterns by fitting

shapes together without gaps or overlaps. In

Figure 13: Artworks showcase repetitive behaviours

Figure 14: Artworks showcase leaves of traces behaviours

Figure 15: Artworks showcase tiled behaviours

Journal of
Design Studio
v:7 n:1 July 2025

18
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

Tessellation, each tile must have a relational

and formal connection in order to create a grid-

based distribution. Tiling, on the other hand, is

a more general term that refers to covering a

surface with a pattern of flat shapes that may or

may not meet the specific requirements of

Tessellation. In short, every Tessellation

involves Tiling, but not every Tiling can be

considered a Tessellation (Figure 16).

Randomness: It represents stochastic decisions

executed through a series of numbers by pre-

defined programming tools. Similar to the

notion of throwing a dice or tossing a coin in

real life. There is a 1/6 possibility of getting six

from dice and a 1/2 possibility with a coin to get

head or tails. Sometimes artists get benefit from

the random decisions (Figure 17).

Displacement: There must be a form that can

be generated at least 3 points. It is the act of

repetition by modifying the existing form.

Displacement tells us the change of a specific

vertex or vertices position. The formal changes

must be observable, such as in Figure 18.

Typography: It means a typographic element

used in the artwork, like fonts or graphics, that

generates textual forms (Figure 19).

Figure 16: Artworks showcase tessellated behaviours

Figure 17: Artworks showcase random behaviours

Figure 18: Examples of artworks exhibiting displacement behaviours

Figure 19: Examples of artworks exhibiting typographic features

Journal of
Design Studio
v:7 n:1 July 2025

19
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

Layering: Layering refers to the procedural

drawing order of the visual elements on the

canvas. An explanatory example of layering can

be Frieder Nake's work, which is a type of

layering. During the periods of plotters, it was

not possible to draw multi-color images.

Another approach was to redraw iterations of

the same idea on the same paper by switching

the marker or pen (Figure 20).

Image Processing: In image processing

category, usually, the image is preloaded into

the computer buffer. The artist may use

additional filters to this data and create

something similar or a completely different

image from the loaded data (Figure 21).

Oscillation (OSC): The concept of oscillation

pertains to the recurring pattern of periodic

phenomena, such as that of a sine wave. One

can observe a repetition of neighbouring points

in the visual representation; it could imply the

utilization of trigonometric functions. The

periodic pattern may consist of distinctive

alterations with each cycle. It does not have to

depict the reoccurrence of the same graphical

object due to the nature of computer art

programming practices and the artist's intuition

(Figure 22).

Packing (Space-Filling): Packing involves

fitting the objects into a limited space (a.k.a

space-filling or packing algorithm). The rule is

that objects must not interfere with each other

(Figure 23).

Figure 20: Examples of artworks that exhibit stratified behaviours

Figure 21: Examples of artworks that demonstrate processed image behaviours

Figure 22: Examples of artworks that demonstrate forms of wave like behaviours

Figure 23: Examples of artworks that Packing behaviours

Journal of
Design Studio
v:7 n:1 July 2025

20
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

Recursion: Recursion is a programming

technique where a function calls itself to solve

a problem. It can be used to create complex and

organic forms in computer art. Recursion is

different than repetition in terms of

paradigmatic aspects in programming. For

example, a repetition using a for loop draws five

circles in a row, each with a slightly different x-

coordinate. A recursive function draws a fractal

pattern by repeatedly drawing circles and

calling itself with a smaller size—for example,

Georg Nees. In summary, repetitions via for

loops are well-suited for simplicity, while

recursion can create more complex and organic

patterns in computer art (Figure 24).

Agent-based: The artist creates an algorithm, a

mechanical device, or instructs human agents to

produce the artwork by instructing the agents

partly or entirely (Figure 25).

Collage: Collage praxis category is like the

traditional collage methods in art. Variable

techniques can be applied and combined in

algorithmic art. Images can be cropped

manually and then transferred to the computer,

and using programming practices, they can be

positioned on the canvas (Figure 26).

The ALAP database can serve as customized

learning material for contextualized

programming education. Instructors can utilize

examples from the database to demonstrate

relevant programming practices. Novices can

explore the database to understand the

connection between programming practices and

visual compositions within Algorithmic Art.

Prior to advancing to the next section, it is

necessary to introduce a pair of helpful tool for

learners: the ALAP Categories and Cheat Sheet

(Figure 28). The final stage of our study

involves organizing all the information into a

manageable framework and incorporating

illustrations for each category item. The

resource is designed for two separate A4 size

paper and can benefit both learners and

educators during the analysis of algorithmically

created visuals.

Figure 24: Examples of artworks that demonstrate recursive behaviours

Figure 25: Examples of artworks that demonstrate autonomous behaviours

Figure 26: Examples of artworks that demonstrate collage like behaviours

Journal of
Design Studio
v:7 n:1 July 2025

21
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

As our primary audience consists of visually

oriented learners, we have developed 18 distinct

illustrations representing each category, along

with a corresponding cheat sheet containing

descriptions for each category. This resource

aims to help beginners easily grasp the

programming practice and patterns depicted in

the artwork during their potential lectures. In

addition to the online ALAP database, the

printed versions of the categories and cheat

sheet are intended to serve as tangible tools to

facilitate the CT process during programming

activities.

3. Case Study

In our case study, we will be utilizing the P5JS

creative coding tool, which is based on the

JavaScript programming language. However,

individuals with intermediate or advanced

programming skills can adapt and employ these

concepts in other textual or visual programming

languages. It is assumed that the students have

a fundamental understanding of programming

theory, including the concepts of variables,

functions, and loops.

The case study will follow the following steps

1.Choosing an artwork from the online ALAP

database.

2.Printing the ALAP Categories and

Cheatsheet.

3.Applying Computational Thinking

principles to analyze the artwork.

4. Using the ALAP Categories to address the

programming tasks.

Figure 27: ALAP Categories (left) and Cheat Sheet (right)

Journal of
Design Studio
v:7 n:1 July 2025

22
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

For this case study, we have selected Vera

Molnar's artwork "Carrés" (Figure 28).

By leveraging the principles of Computational

Thinking (CT), we can systematically address

the problem and devise a solution.

Decomposition, Pattern Recognition,

Abstraction, and Algorithmic Design principles

of CT offer a structured approach to problem-

solving and can provide guidance through the

process of re-creating the selected algorithmic

artwork using P5JS.

Decomposition is the process of breaking down

a problem into smaller, more manageable parts.

When creating Molnar's artwork, this step

involves identifying the individual elements in

the composition. During this phase, we

concentrate on the formalistic features and

observe the artwork's formal aspects without

considering the programmatic part. For

beginners, it's helpful to meticulously jot down

every tiny physical feature they notice in the

composition using their preferred medium, such

as writing or illustrating on paper or a digital

tablet. This approach allows us to focus on

individual tasks one at a time, rather than

attempting to figure out the entire computer

program all at once. Figure 29 depicts our notes

on the decomposition step.

Figure 28. Vera Molnar, Carrés (1991)

Journal of
Design Studio
v:7 n:1 July 2025

23
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

In this step, we identify the correlations and

relationships between different composition

parts. For example, all elements in the artwork

are copies of the same square. Therefore, we do

not need to declare the size for each square

individually. Instead, we can define a variable

to hold the size of a square and instruct the

computer program to use that same value for all

squares. Another formalistic feature we can

identify is the noticeable vertical distance

between each row compared to the horizontal

distance between squares. Even if the positions

of the squares appear random, the vertical

distance varies more than the horizontal

distance.

Similarly, we can define another variable to

store the color value of each square. The ALAP

Categories sheet also acts as a bridge, allowing

us to identify programming paradigms observed

in the artwork (Figure 30). For instance, the

objects appear to be distributed in a grid format

resembling an 8x8 matrix, even if they seem

randomly positioned on the canvas. We can

categorize this as Tiling and start researching

relevant sources related to the P5JS

programming language. Upon observing the

position of each square, we notice they are

slightly off their exact position, displaced by a

few pixels to the left, right, up, or down. This

leads us to identify randomness as a part of the

composition but with constraints, such as just a

few pixels of variation.

Additionally, the margin between the

composition and the frame depends on the size

of the squares. The margin from the sides is two

times larger than the size of a square. In this

step, the possibilities are endless, and the

discovery of patterns may vary according to the

viewer's experience and level of familiarity with

the compositional aspects of an artwork. It does

not require specific talent but depends on how

one looks at and perceives their environment.

We mark down the Translation and Repetition

categories because the squares are distributed

on the canvas repeatedly. Lastly, we mark

layering because the drawing order matters.

Figure 29: Notes for Decomposition step

Journal of
Design Studio
v:7 n:1 July 2025

24
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

In the abstraction step, it's crucial to simplify

complex concepts by concentrating on their

essential features based on the capabilities of

our computer and programming language, using

the ALAP categories sheet as a guide. As shown

in Figure 31, we can align the programming

paradigms with our notes on the artwork.

Instead of using natural language at this stage,

we should express our findings in a declarative

manner to ensure they are meaningful to the

computer. During this phase, we can establish

variable names such as "colorBg" for the

background color and "colorSquares" for

storing square color values. At this stage, we

commence coding by declaring variables and

assigning values. Figure 31 illustrates ten

distinct variables extracted from our previous

analysis. The abstraction stage resembles

uncovering the meaning of a term in a particular

language from a dictionary. The ALAP

Categories sheet helps us search for relevant

code snippets, online resources, and tutorials.

In the final step, we create a step-by-step

procedure to develop the computer program.

Figure 32 displays the code with comments

indicating its function. Additionally, we

organize the code snippets to present the

relevant ALAP categories. To achieve Tilling,

we employ nested for loops (lines 35,36).

Within the inner loop, spanning lines 37 to 44,

we initially compute x and y-axis values (lines

Figure 30: Abstraction of Programming Practices Identified

Figure 31: Variable declaration

Journal of
Design Studio
v:7 n:1 July 2025

25
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

37, 38) for each repetition to exhibit 64 squares

on the canvas in a grid format. We introduce

random displacement to each square by

generating a random value within the range of -

1 to +1 (line 39), which is then multiplied by six

(line 40) to confine off-grid positions between -

6 and +6. To position the squares, we utilize the

translate function in each iteration (line 42) and

incorporate the variable delta (line 40) to

disperse the squares randomly.

The program utilizes random number

generators to produce various iterations of the

same concept without the need for manual

editing. Figure 33 displays chosen outputs

generated by the code. The progression of the

artwork creation is visualized in a step-by-step

manner, from left to right.

Figure 32: Algorithm Design

Figure 33: Result of the finalized program

Journal of
Design Studio
v:7 n:1 July 2025

26
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

4. Conclusion

In this article, we propose the Algorithmic Art

Praxis (ALAP) Framework as an output of our

study, which was created through extensive

research performed on secondary data

resources, analyzing 2000 images and resulting

in 695 entries to provide tools and learning

material for computational thinking and

contextualized programming education. While

some entries have limited data, others provide

detailed content. In conjunction with computer

programming paradigms, the analysis has

proposed 18 categories related to programming

practices used in algorithmic art. The proposed

framework consists of three main components

that support contextualized programming

education and serve as a tool for computational

thinking and problem-solving methods. By

proposing ALAP Categories, Cheat Sheet, and

a public online database, we provide hands-on

learning and teaching material that has the

potential to grow and improve over time with

the contribution of other researchers. The

categories serve as semiotically defined

constructs aimed at helping novices analyze

artworks and bridge the gap between artistic

expression and programming concepts.

The process of collating information from

disparate sources to ascertain the most accurate

data was challenging at times. In particular,

gathering data from disparate and constrained

sources proved to be a highly time-consuming

endeavor. Although the present study is

concerned with the formal aspects of created

artworks, we have assumed the responsibility of

providing the most accurate information about

the artwork for the academic community. In

addition to our framework, we aim to provide a

unique resource material for teaching and

learning programming, which we have

previously argued is one of the missing tools for

contextualized programming education. At the

same time, our online database is intended to be

a valuable resource for other researchers

working on the topic in future studies who are

looking for such information in one place rather

than searching multiple web resources.

Following our research and analysis results, we

demonstrated a case study on how others can

integrate the ALAP framework as a helper tool

with Computational Thinking principles in their

creative coding classes. Our framework should

be applied in introductory programming classes

after the students are taught fundamental

programming concepts. Then, using the ALAP

categories, each Praxis category should be

explained and demonstrated with various

examples via our online ALAP database.

During the lectures, students can also review the

online database from their personal computers,

and they can keep the ALAP categories and

cheat sheet in printed format for in-class

practices to benefit from the framework. Using

these tools allows the learner to match similar

formal behavior on the artwork with a relevant

programming practice used in creative coding.

So, the learner can research different sources or

relevant book chapters using the keywords. For

our case study, we suggest checking the P5JS

forum5, documentation6, and the books (Table

2) related to P5JS for beginners and

introductory programming classes.

By providing a structured approach that links

visual elements to programming paradigms,

ALAP offers valuable tools for researchers,

educators, and students in digital art and

computer science looking for concrete resource

material and tools contextualized within

Algorithmic works of art.

Finally, future research should focus on

empirically testing the effectiveness of the

ALAP framework in educational settings and

exploring its potential applications in other

domains where computational thinking

intersects with creative practices.

Notes:

1. Online ALAP Database web site
 (https://tinyurl.com/AlgorithmicArtPraxis).

2. The Internet Archive is a non-profit organization that operates
as a digital library for Internet sites and other cultural artifacts.

Its aim is to provide universal access to all knowledge, offering

free access to researchers, historians, scholars, individuals with
print disabilities, and the general public. It functions like a

traditional library, but in digital form, and is committed to

preserving and providing access to the world's cultural heritage
for future generations.

3. Notion web site (https://www.notion.so).

4. ALAP Online Database tutorial videos
 (https://www.youtube.com/watch?v=UWWDdKc2xko).

https://tinyurl.com/AlgorithmicArtPraxis
https://www.notion.so/
https://www.youtube.com/watch?v=UWWDdKc2xko

Journal of
Design Studio
v:7 n:1 July 2025

27
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

5. Processing Forum web site (https://discourse.processing.org/).

6. P5JS Documentation web site (https://p5js.org/reference/),
 examples (https://p5js.org/examples/) and tutorials

(https://p5js.org/tutorials/).

Acknowledgment: N/A
Conflict of Interest: The authors stated that there are no conflicts

of interest regarding the publication of this article.

Ethics Committee Approval: N/A
Author Contributions: The authors confirm sole responsibility

for the following: study conception and design, data collection,

analysis and interpretation of results, and manuscript preparation.
Financial Disclosure: The authors declared that this study has

received no financial support.

References

Allwood, C. M. (1986). Novices on the

computer: A review of the literature.

International Journal of Man-Machine Studies,

25(6), 633–658. https://doi.org/10.1016/S0020-

7373(86)80079-7

Bailey, J. (2018). Why Love Generative Art?.

notre traduction, juillet.

Boden, M. A., & Edmonds, E. A. (2009). What

is generative art? Digital Creativity, 20(1–2),

21–46.

https://doi.org/10.1080/14626260902867915

Brown, N. C. C., & Wilson, G. (2018). Ten

quick tips for teaching programming. PLoS

Computational Biology, 14(4), e1006023.

https://doi.org/10.1371/journal.pcbi.1006023

Bryant, R., Weiss, R., Orr, G., & Yerion, K.

(2011). Using the context of algorithmic art to

change attitudes in introductory programming.

Journal of Computing Sciences in Colleges,

27(1), 112–119.

http://dl.acm.org/citation.cfm?id=2037177

Berkeley, E. (1963). Computer Art Contest.

Computers and Automation, XII (1), p. 21.

Dorin, A., McCabe, J., McCormack, J., Monro,

G., & Whitelaw, M. (2012). A framework for

understanding generative art. Digital Creativity,

23(3–4), 239–259.

https://doi.org/10.1080/14626268.2012.709940

Farah, J. C., Moro, A., Bergram, K., Purohit, A.

K., Gillet, D., & Holzer, A. (2020). Bringing

computational thinking to non-STEM

undergraduates through an integrated notebook

application. European Conference on

Technology Enhanced Learning, 2676.

http://ceur-ws.org/Vol-2676/paper2.pdf

Galanter, P. (2016). Generative Art Theory. In

A Companion to Digital Art, C. Paul (Ed.).

https://doi.org/10.1002/9781118475249.ch5

Guo, P. J. (2017). Older Adults Learning

Computer Programming: Motivations,

Frustrations, and Design Opportunities.

Proceedings of the 2017 CHI Conference on

Human Factors in Computing Systems, 7070–

7083.

https://doi.org/10.1145/3025453.3025945

Guzdial, M. (2006). Teaching computing for

everyone. Journal of Computing Sciences in

Colleges, 21(4), 6.

http://dl.acm.org/ft_gateway.cfm?id=1127390

&type=pdf

Guzdial, M. (2010). Does contextualized

computing education help? ACM Inroads, 1(4),

4–6. https://doi.org/10.1145/1869746.1869747

Hansen, S. M. (2019). Mapping Creative

Coding Courses: Toward Bespoke

Programming Curricula in Graphic Design

Education. Eurographics 2019 - Education

Papers, 4 pages.

https://doi.org/10.2312/EGED.20191024

Kelleher, C., & Pausch, R. (2005). Lowering the

barriers to programming: A taxonomy of

programming environments and languages for

novice programmers. ACM Computing Surveys,

37(2), 83–137.

https://doi.org/10.1145/1089733.1089734

Liao, L., & Pope, J. W. (2008). Computer

literacy for everyone. Journal of Computing

Sciences in Colleges, 23(6), 231–238.

https://doi.org/10.5555/1352383.1352423

Lohiniva, M., & Isomöttönen, V. (2021).

Novice Programming Students’ Reflections on

Study Motivation during COVID-19 Pandemic.

2021 IEEE Frontiers in Education Conference

(FIE), 1-9.

https://discourse.processing.org/
https://p5js.org/reference/
https://p5js.org/examples/
https://p5js.org/tutorials/
https://doi.org/10.1016/S0020-7373(86)80079-7
https://doi.org/10.1016/S0020-7373(86)80079-7
https://doi.org/10.1080/14626260902867915
https://doi.org/10.1371/journal.pcbi.1006023
http://dl.acm.org/citation.cfm?id=2037177
https://doi.org/10.1080/14626268.2012.709940
http://ceur-ws.org/Vol-2676/paper2.pdf
https://doi.org/10.1002/9781118475249.ch5
https://doi.org/10.1145/3025453.3025945
http://dl.acm.org/ft_gateway.cfm?id=1127390&type=pdf
http://dl.acm.org/ft_gateway.cfm?id=1127390&type=pdf
https://doi.org/10.1145/1869746.1869747
https://doi.org/10.2312/EGED.20191024
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.5555/1352383.1352423

Journal of
Design Studio
v:7 n:1 July 2025

28
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

Luxton-Reilly, A. (2016). Learning to Program

is Easy. Proceedings of the 2016 ACM

Conference on Innovation and Technology in

Computer Science Education, 284–289.

https://doi.org/10.1145/2899415.2899432

Macdonald, N. (1981). Computers and

People—Vol XXX - 7-8. 30(7–8).

McCarthy, L., Reas, C., & Fry, B. (2015).

Getting Started with p5.js: Making Interactive

Graphics in JavaScript and Processing. Maker

Media, Inc.

Medeiros, R. P., Ramalho, G. L., & Falcao, T.

P. (2019). A Systematic Literature Review on

Teaching and Learning Introductory

Programming in Higher Education. IEEE

Transactions on Education, 62(2), 77–90.

https://doi.org/10.1109/TE.2018.2864133

Mollu, M. (2020). Computational thinking as a

problem-solving framework for the 21st

century. International Journal of Educational

Technology and Society, 23(2), 305–315.

Noble, J. J. (2009). Programming interactivity:

A designer’s guide to processing, Arduino, and

openFrameworks (1st ed). O’Reilly.

Papert, S. (1980). Mindstorms: Children,

computers, and powerful ideas. Basic Books.

Pearson, M. (2011). Generative art: A practical

guide using processing. Manning; Pearson

Education.

Perevalov, D., & Tatarnikov, I. (2013).

Mastering openFrameworks: Creative coding

demystified: a practical guide to creating

audiovisual interactive projects with low-level

data processing using openFrameworks. Packt

Publishing.

Perevalov, D., & Tatarnikov, I. (2015).

openFrameworks Essentials: Create stunning,

interactive openFrameworks-based

applications with this fast-paced guide. Packt

Publishing.

Phon-Amnuaisuk, S., & Panjapornpon, J.

(2012). Controlling Generative Processes of

Generative Art Somnuk Phon-. Procedia

Computer Science, 13, 43–52.

https://doi.org/10.1016/j.procs.2012.09.112

Polanyi, M., & Sen, A. (2009). The Tacit

Dimension. University of Chicago Press.

Reas, C., & Fry, B. (2007). Processing: A

programming handbook for visual designers

and artists. MIT Press.

Ring, B. A., Giordan, J., & Ransbottom, J. S.

(2008). Problem Solving Through

Programming: Motivating the Non-

Programmer. Consortium for Computing

Sciences in Colleges, 23(3), 7.

Robins, A., Rountree, J., & Rountree, N.

(2003). Learning and Teaching Programming:

A Review and Discussion. Computer Science

Education, 13(2), 137–172.

https://doi.org/10.1076/csed.13.2.137.14200

Romero, M., Lepage, A., & Lille, B. (2017).

Computational thinking development through

creative programming in higher education.

International Journal of Educational

Technology in Higher Education, 14(1), 42.

https://doi.org/10.1186/s41239-017-0080-z

Shein, E. (2014). Should Everybody Learn to

Code? Association for Computing Machinery,

57(2), 16–18. https://doi.org/10.1145/2557447

Shiffman, D. (2008). Learning Processing: A

beginner’s guide to programming images,

animation, and interaction. Morgan

Kaufmann/Elsevier.

Shiffman, D. (2012). The Nature of Code.

Nature of Code.

Wing, J. M. (2008). Computational thinking

and thinking about computing. Philosophical

Transactions of the Royal Society A:

Mathematical, Physical and Engineering

Sciences, 366(1881), 3717–3725.

https://doi.org/10.1098/rsta.2008.0118

https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1109/TE.2018.2864133
https://doi.org/10.1016/j.procs.2012.09.112
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1186/s41239-017-0080-z
https://doi.org/10.1145/2557447
https://doi.org/10.1098/rsta.2008.0118

Journal of
Design Studio
v:7 n:1 July 2025

29
Journal of Design Studio, v:7 n:1
Tugan, A., Koksal, A.H., (2025), Algorithmic Art Praxis: A Framework for Contextualized Programming Education

Winslow, L. E. (1996). Programming

pedagogy—a psychological overview. ACM

SIGCSE Bulletin, 28(3), 17–22.

https://doi.org/10.1145/234867.234872

Terzidis, K. (2009). Algorithms for visual

design using the processing language. Wiley

Pub.

Torrence, B. (2021). Tessellations:

Mathematics, Art, and Recreation. American

Mathematical Monthly, 128(10), 955–959.
https://doi.org/10.1080/00029890.2021.1971917

Yadav, A., Stephenson, C., & Hong, H. (2017).

Computational thinking for teacher education.

Communications of the ACM, 60(4), 55–62.

https://doi.org/10.1145/2994591

Yardi, S., & Bruckman, A. (2007). What is

computing? Bridging the gap between

teenagers’ perceptions and graduate students’

experiences. Proceedings of the Third

International Workshop on Computing

Education Research - ICER ’07, 39.

https://doi.org/10.1145/1288580.1288586

https://doi.org/10.1145/234867.234872
https://doi.org/10.1080/00029890.2021.1971917
https://doi.org/10.1145/2994591
https://doi.org/10.1145/1288580.1288586

